Diophantine Approximation by Prime Numbers, III

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine approximation by conjugate algebraic numbers

In 1969, Davenport and Schmidt provided upper bounds for the approximation of a real number by algebraic integers. Their novel approach was based on the geometry of numbers and involved the duality for convex bodies. In the present thesis we study the approximation of a real number by conjugate algebraic numbers. We find inspiration in Davenport and Schmidt’s method, but ultimately our approxim...

متن کامل

Normal numbers and Diophantine approximation

We begin by recalling some classical results on normal and nonnormal numbers. Then, we discuss the following general question. Take a property of Diophantine approximation (e.g., to be badly approximable by rational numbers, to be a Liouville number, etc.) and a property concerning the digits (e.g., to be normal, to lie in the middle third Cantor set, etc.), do there exist real numbers having b...

متن کامل

Diophantine Approximation by Cubes of Primes and an Almost Prime

Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.

متن کامل

Diophantine Approximation by Primes

We show that whenever δ > 0 and constants λi satisfy some necessary conditions, there are infinitely many prime triples p1, p2, p3 satisfying the inequality |λ0 + λ1p1 + λ2p2 + λ3p3| < (max pj)−2/9+δ. The proof uses Davenport–Heilbronn adaption of the circle method together with a vector sieve method. 2000 Mathematics Subject Classification. 11D75, 11N36, 11P32.

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 1976

ISSN: 0024-6115

DOI: 10.1112/plms/s3-33.1.177