Diophantine Approximation by Prime Numbers, III
نویسندگان
چکیده
منابع مشابه
Diophantine approximation by conjugate algebraic numbers
In 1969, Davenport and Schmidt provided upper bounds for the approximation of a real number by algebraic integers. Their novel approach was based on the geometry of numbers and involved the duality for convex bodies. In the present thesis we study the approximation of a real number by conjugate algebraic numbers. We find inspiration in Davenport and Schmidt’s method, but ultimately our approxim...
متن کاملNormal numbers and Diophantine approximation
We begin by recalling some classical results on normal and nonnormal numbers. Then, we discuss the following general question. Take a property of Diophantine approximation (e.g., to be badly approximable by rational numbers, to be a Liouville number, etc.) and a property concerning the digits (e.g., to be normal, to lie in the middle third Cantor set, etc.), do there exist real numbers having b...
متن کاملDiophantine Approximation by Cubes of Primes and an Almost Prime
Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.
متن کاملDiophantine Approximation by Primes
We show that whenever δ > 0 and constants λi satisfy some necessary conditions, there are infinitely many prime triples p1, p2, p3 satisfying the inequality |λ0 + λ1p1 + λ2p2 + λ3p3| < (max pj)−2/9+δ. The proof uses Davenport–Heilbronn adaption of the circle method together with a vector sieve method. 2000 Mathematics Subject Classification. 11D75, 11N36, 11P32.
متن کاملDiophantine approximation and Diophantine equations
The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 1976
ISSN: 0024-6115
DOI: 10.1112/plms/s3-33.1.177